Studies on the use of recombinant spider silk protein/polyvinyl alcohol electrospinning membrane as wound dressing

نویسندگان

  • Liang Zhao
  • Denglong Chen
  • Qinghua Yao
  • Min Li
چکیده

A series of wound membranes of polyvinyl alcohol and recombinant spider silk protein (pNSR16) was prepared by electrospinning. The membrane was analyzed by scanning electron microscopy, atomic force microscopy, and Fourier transform infrared spectroscopy. The result showed that the three factors that affected average fiber diameter from high to low were, voltage, flow speed, and solidification distance; and the three factors that affected fiber uniformity from high to low were, flow speed, solidification distance, and voltage. The fibers adhered together after being dealt with alcohol. pNSR16 transformed from random coil into β-sheet after being immersed in alcohol. Additionally, the porosity of the electrospun membrane was 84.85%, which was higher than that of cast membrane prepared with the same composition. Experiments of applying electrospun membranes as wound dressing for Sprague Dawley rat wound healing showed that it could promote wound healing and basic fibroblast growth factor expression.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of a new type of wound dressing made from recombinant spider silk protein using rat models.

This study investigates the feasibility of recombinant spider silk protein as a wound-dressing material for coverage of deep second-degree burn wounds using an animal model. Sixty Sprague-Dawley (SD) rats were randomly divided into four groups (15 rats in each group). Two types of recombinant spider silk proteins, pNSR-16 and pNSR-32, as well as collagen (as a control) were applied on the wound...

متن کامل

Fabrication of Polyvinyl Alcohol/Kefiran Nanofibers Membrane Using Electrospinning

The Poly (vinyl alcohol)/Kefirane nanofiber membrane was successfully fabricated for the firsttime using electrospinning of the polyvinyl alcohol (PVA) and Kefirane blend solution. Scanningelectron microscope (SEM), attenuated total reflectance Fourier transform infrared (ATRFT-IR), and differential scanning calorimetry (DSC) were used to characterize the electrospunPoly (vinyl alcohol)/Kefiran...

متن کامل

Sericin Film: Influence of Concentration on its Physical Properties

Silk sericin (SS) is a glue-like protein from silkworm cocoon. With its outstanding moisturization and activation collagen synthesis properties, silk protein is applied for wound healing. Since wound dressing in film preparation can facilitate patients’ convenience and reduce risk of wound contraction, SS and polyvinyl alcohol (PVA) films were prepared with various concentrations of SS. Their p...

متن کامل

Mass Transfer During the Pre-Usage Dehydration of Polyvinyl Alcohol Hydrogel Wound Dressings

     Nowadays, hydrogels are widely used as wound dressings in biomedical applications. Similar to other types of the moist (wet) wound dressings, it is necessary to have sufficient information about their dehydration kinetics during the pre-usage period (e.g. storage duration) and also the wound healing process. In this work, hydrogel wound dressings based on polyvinyl alcohol were prepared by...

متن کامل

Silk suture reinforced with Cefixime nanoparticles using polymer hydrogel (CFX@PVA); Preparation, Bacterial resistance and Mechanical properties

Objective(s): The objective of the current study was to prevent surgical site infection (SSI) by creating a new antibacterial silk suture. Methods: Cefixime trihydrate (CFX) was prepared as nanoparticles via mixing with polyvinyl alcohol (PVA) hydrogel by covalent cross-linkage. The mixture was stirred vigorously to obtain a homogenous gel. Under this conditio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2017